Search results for "Infrared atmospheric sounding interferometer"

showing 6 items of 6 documents

Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data

2019

In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one…

Computer scienceInfrared Atmospheric Sounding Interferometer (IASI)Spectral Transforms0211 other engineering and technologies02 engineering and technologyData_CODINGANDINFORMATIONTHEORYLossy compressionInfrared atmospheric sounding interferometer (IASI)Kernel MethodsElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringbusiness.industryDimensionality reductionLossy CompressionJPEG 2000Kernel methodsPattern recognitioncomputer.file_formatJoint Photographic Experts Group (JPEG) 2000RegressionUncompressed videoSpectral transformsKernel methodStatistically based retrievalJPEG 2000General Earth and Planetary SciencesLossy compressionArtificial intelligencebusinessStatistically Based RetrievalcomputerSmoothingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Statistical atmospheric parameter retrieval largely benefits from spatial-spectral image compression

2021

The infrared atmospheric sounding interferometer (IASI) is flying on board of the Metop satellite series, which is part of the EUMETSAT Polar System. Products obtained from IASI data represent a significant improvement in the accuracy and quality of the measurements used for meteorological models. Notably, the IASI collects rich spectral information to derive temperature and moisture profiles, among other relevant trace gases, essential for atmospheric forecasts and for the understanding of weather. Here, we investigate the impact of near-lossless and lossy compression on IASI L1C data when statistical retrieval algorithms are later applied. We search for those compression ratios that yield…

MeteorologySatellites0211 other engineering and technologies02 engineering and technologyAtmospheric modelLossy compressionInfrared atmospheric sounding interferometerAtmospheric measurements0202 electrical engineering electronic engineering information engineeringTransform codingElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringRemote sensingTemperature measurementHyperspectral imagingImage coding020206 networking & telecommunicationsTransformsDepth soundingAtmospheric modelingDew point13. Climate actionCompression ratioGeneral Earth and Planetary SciencesEnvironmental science
researchProduct

Kernel-based retrieval of atmospheric profiles from IASI data

2011

This paper proposes the use of kernel ridge regression (KRR) to derive surface and atmospheric properties from hyperspectral infrared sounding spectra. We focus on the retrieval of temperature and humidity atmospheric profiles from Infrared Atmospheric Sounding Interferometer (MetOp-IASI) data, and provide confidence maps on the predictions. In addition, we propose a scheme for the identification of anomalies by supervised classification of discrepancies with the ECMWF estimates. For the retrieval, we observed that KRR clearly outperformed linear regression. Looking at the confidence maps, we observed that big discrepancies are mainly due to the presence of clouds and low emissivities in de…

Support vector machineKernel methodInfraredComputer scienceKernel (statistics)Hyperspectral imagingAtmospheric modelInfrared atmospheric sounding interferometerAtmospheric temperatureSpectral lineRemote sensing2011 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

The 2009 Edition of the GEISA Spectroscopic Database

2011

The updated 2009 edition of the spectroscopic database GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques; Management and Study of Atmospheric Spectroscopic Information) is described in this paper. GEISA is a computer-accessible system comprising three independent sub-databases devoted, respectively, to: line parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031cm-1.The successful performances of the new …

010504 meteorology & atmospheric sciencesMeteorologyTélédétectionPhysique atomique et moléculaireMolecular spectroscopyInfrared atmospheric sounding interferometercomputer.software_genre01 natural sciencesLine parametersAtmospheric radiative transfer0103 physical sciences010303 astronomy & astrophysicsSpectroscopy0105 earth and related environmental sciencesRemote sensingWeb site[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]RadiationSpectroscopic database[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]DatabaseGEISAOptically activeAtmospheric aerosolsMolecular spectroscopyAtomic and Molecular Physics and Optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryOn boardSpectroscopie [électromagnétisme optique acoustique][ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryEarth's and planetary atmospheresEnvironmental scienceAtmospheric absorptionAtmospheric absorptionCross-sectionscomputer
researchProduct

Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval

2018

The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform w…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalityIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Nonlinear statistical retrieval of surface emissivity from IASI data

2017

Emissivity is one of the most important parameters to improve the determination of the troposphere properties (thermodynamic properties, aerosols and trace gases concentration) and it is essential to estimate the radiative budget. With the second generation of infrared sounders, we can estimate emissivity spectra at high spectral resolution, which gives us a global view and long-term monitoring of continental surfaces. Statistically, this is an ill-posed retrieval problem, with as many output variables as inputs. We here propose nonlinear multi-output statistical regression based on kernel methods to estimate spectral emissivity given the radiances. Kernel methods can cope with high-dimensi…

0211 other engineering and technologies020206 networking & telecommunications02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometerLeast squaresKernel method13. Climate actionKernel (statistics)Linear regression0202 electrical engineering electronic engineering information engineeringEmissivityKernel regressionPhysics::Atmospheric and Oceanic Physics021101 geological & geomatics engineeringRemote sensingMathematics2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct